Novel Carbanion-induced Type of Ene reaction

By John H. Edwards and Francis J. McQuillin *
(Department of Organic Chemistry, University of Newcastle upon Tyne NE1 7RU)

Summary With $\mathrm{Bu}^{\mathrm{n}} \mathrm{Li}$-tetramethylethylenediamine, 3,7-dimethylocta-1,6-diene is cyclised to the allylic carbanion of 1,2 -dimethyl-3-isopropenyl cyclopentane.

Following a survey of reactions of 3,7-dimethylocta-1,6diene (1) via carbonium ion, ${ }^{1}$ and radical ${ }^{2}$ intermediates, we have examined the reaction of (1) with $\mathrm{Bu}{ }^{\mathrm{n}} \mathrm{Li}$ which has led us to recognise an apparently novel polar equivalent of the ene reaction.

With $\mathrm{Bu}^{\mathrm{n}} \mathrm{Li}$ and tetramethylethylenediamine (TMEDA) (each 1 equiv.) in hexane, (1) gave a red-brown solution. After 12 h at $20^{\circ} \mathrm{C}$ addition of $\mathrm{D}_{2} \mathrm{O}$ gave a product, $m / e 138$ and $139,50 \%{ }^{2} \mathrm{H}$, with a ${ }^{13} \mathrm{C}$ n.m.r. spectrum showing the presence of (1), but with new signals due to an isomeric alkene which was shown to be (2): (1) 17•7, 20.2, 25.0, 25.8, $36 \cdot 9,37 \cdot 5,110 \cdot 0,112 \cdot 5,124 \cdot 8$, and $131 \cdot 1$; (2) $15 \cdot 7,21 \cdot 4$, $23 \cdot 4,28 \cdot 0,33 \cdot 1,41 \cdot 2,43 \cdot 1,49 \cdot 4$, and $109 \cdot 9$ p.p.m. from $\mathrm{Me}_{4} \mathrm{Si}$ in CDCl_{3}.

(1)

(2)

(3)

The nature of the isomeric alkene was established by oxygenation ${ }^{3}$ of the solution from the action of $\mathrm{Bu}^{\mathrm{n}} \mathrm{Li}-$ TMEDA on (1), and reduction $\left(\mathrm{NaBH}_{4}\right)$ of the derived hydroperoxide. This gave an alcohol, $m / e 154\left(\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}\right)$, $\delta 0.7(3 \mathrm{H}, \mathrm{d}, J 6 \mathrm{~Hz}), 0.98(3 \mathrm{H}, \mathrm{d}, J 5 \mathrm{~Hz}), 3.1(1 \mathrm{H}, \mathrm{s}), 4.0$ $(2 \mathrm{H}, \mathrm{s})$, and $4 \cdot 84$ and $5 \cdot 14$ (each $1 \mathrm{H}, \mathrm{s})$, which could be
hydrogenated to a dihydro-alcohol, m / e 156. Jones' oxidation gave an aldehyde, $m / e 152, \delta 0.62(3 \mathrm{H}, \mathrm{d}, J$ $6 \mathrm{~Hz}), 1.0(3 \mathrm{H}, \mathrm{d}, J 5 \mathrm{~Hz}), 5.95,6.09($ each 1 H$)$, and 9.53 $(1 \mathrm{H}, \mathrm{s}) ; \lambda_{\max } 221 \mathrm{~nm}, \epsilon 9200$, i.e. clearly conjugated, suggesting (3) as the structure of the parent alcohol.

Table			
R		m / e	δ
$\mathrm{CO}_{2} \mathrm{Me}$	15	196	$5 \cdot 0,4 \cdot 9,3 \cdot 7,3 \cdot 9,1 \cdot 05^{\text {a }}, 0 \cdot 7 \mathrm{a}$
$\mathrm{CH}(\mathrm{OH}) \mathrm{CH}: \mathrm{CH}_{2}$	35	194	$4 \cdot 9,4 \cdot 85,1 \cdot 03^{\text {a }}, 0 \cdot 7{ }^{\text {a }}$
$\mathrm{CH}_{2} \mathrm{C}: \mathrm{CH}$	35	176	$4 \cdot 8,4 \cdot 7,2 \cdot 38,1 \cdot 0,{ }^{\text {a }}, 0 \cdot 7{ }^{\text {a }}$
1-Hydroxycyclopentyl	22	222	$4 \cdot 9,1 \cdot 0^{\text {a }}, 0 \cdot 7{ }^{\text {a }}$
$\mathrm{CH}(\mathrm{OH}) \mathrm{Pr}^{1}$	42	210	$4 \cdot 8,0 \cdot 7{ }^{\text {a }}$
$\mathrm{COPr}{ }^{18}$	-	208	$4 \cdot 8,1 \cdot 06^{\text {a }}$
$\mathrm{CH}_{2} \mathrm{COMe}$	-	194	$4 \cdot 75,1 \cdot 0^{\text {a }}, 0 \cdot 7^{\text {a }}$

${ }^{\text {a }}$ Doublet. ${ }^{b}$ From oxidation of $\left[6 ; R=\mathrm{CH}(\mathrm{OH}) \mathrm{Pr}^{1}\right]$. c From hydration (HgSO_{4}) of ($6 ; \mathrm{R}=\mathrm{CH}_{2} \mathrm{C}: \mathrm{CH}$).

Birch reduction of the alcohol gave an alkene; $m / e 138$ $\left(\mathrm{C}_{10} \mathrm{H}_{18}\right), \delta 0.91(3 \mathrm{H}, \mathrm{d}, J 6 \mathrm{~Hz}), 1 \cdot 0(3 \mathrm{H}, \mathrm{d}, J 5 \mathrm{~Hz}), 1.71$ $(3 \mathrm{H}, \mathrm{s})$, and 4.67 and 4.78 (each $1 \mathrm{H}, \mathrm{s})$. This was shown to be identical (g.l.c., n.m.r.) with the major product of ene cyclisation of (1), which we have shown ${ }^{12}$ to have the stereochemistry as in (2). Further, the alkene (2) from ene cyclisation of (1), with BunLi-TMEDA in hexane followed by O_{2} and NaBH_{4} gave an alcohol identical (g.l.c., n.m.r.) with (3).

The alcohol (3) is most logically considered to arise via oxygenation of an allylic anion (5) which we suggest derives from (1) via the allylic anion (4).

Hydrogen transfer as in (4), i.e. a low temperature polar equivalent of the ene cyclisation, offers an attractive possible route to (4), and there is precedent ${ }^{4}$ for reaction of a carbanion with a simple alkene. However, the known ${ }^{5}$ interconversion of carbanions may offer an alternative, i.e. by transfer of Li rather than H followed by inter- or intramolecular hydrogen exchange.

The diene (1) is obtained by pyrolysis of pinane followed by fractionation, and, in order to substantiate our conclusion above, it was necessary to exclude the possibility that (3) might arise from (2) formed during pinane pyrolysis and present in our sample. However, the following evidence indicates clearly that this is not the case. The yield, 30%, of distilled alcohol (3), b.p. $54-60{ }^{\circ} \mathrm{C}$ at $0 \cdot 1$
mmHg , could be reproduced by recycling the unchanged recovered (1) in a second reaction with BunLi and oxygen. A sample of (1) prepared by dehydration (toluene- p-sulphonic acid, benzene, azeotrope) of a pure sample of 3,7-dimethyloct-1-en-7-ol gave the same yield of (3) on treatment with $\mathrm{Bu}^{\mathrm{nLi}} \mathrm{O}_{2}$. Further, reaction of the carbanion from (1) with a range of electrophilic addends $\left(\mathrm{CO}_{2}, \mathrm{CHO}-\right.$ $\mathrm{CH}_{2} \mathrm{CHMe}_{2}, \mathrm{CHOCH}: \mathrm{CH}_{2}, \mathrm{BrCH}_{2} \mathrm{C}: \mathrm{CH}$, cyclopentanone, or $\mathrm{CHOCHMe}_{2}$) gave yields of products (6), cf. Table, similar to those obtained under similar conditions from limonene. ${ }^{3}$

(6)

We thank Bush, Boake, Allen for gifts of materials.
(Received, 8th August 1977; Com. 833.)
${ }^{1}$ (a) F. J. McQuillin and D. G. Parker, J.C.S. Perkin $I, 1974,809$; (b) 1975, 2092.
${ }^{2} \mathrm{~F} . J$. McQuillin and M. Wood, J.C.S. Perkin I, 1976, 1762; J. Chem. Research, (S), 1977, 61; (M), 0752.
${ }^{3}$ R. J. Crawford, W. F. Erman, and C. D. Broaddus, J. Amer. Chem. Soc., 1972, $94,4298$.
${ }^{4}$ A. Maercker and K. Weber, Annalen, 1972, 756, 43; H. Pines, N. C. Sih, and E. Lewicki, J. Org. Chem., 1965, 30, 1457; W.C. Kossa, T. C. Rees, and H. G. Richey, Tetrahedron Letters, 1971, 3455.
${ }^{5}$ R. B. Bates, S. Brenner, and C. M. Cole, J. Amer. Chem. Soc., 1972, 94, 2131.

